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Abstract

We explore the information content of dockside prices and fishing

costs in the estimation of stock abundance. Our approach is two-

pronged: we first examine whether the implied biomass, that is, the

biomass that is consistent with a simple microeconomic model cali-

brated with observed prices and costs, offers an approximation of actual

stock assessments: both agree over the first 20 years of observation,

but diverge over the last five. In a second approach, we use annual

data in Vector Autoregressive (VAR), Bayesian VAR (B-VAR), and

Vector Error Correction (VEC) frameworks and add monthly data in

a mixed-frequency data analysis including Mixed-Frequency Bayesian

VAR (MF-BVAR) and Mixed-Data Sampling (MIDAS) frameworks

for log-differenced time series. Parameter uncertainties are addressed

through Bayesian regression and forecasting methods. We find a statis-

tically significant correlation between biometric estimates and changes

in a price-based indicator that is robust to the inclusion of confound-

ing factors. We conclude that the combination of price data and per-

trip landings, when interpreted with care, can serve as a complemen-

tary, but comparatively affordable and timely, source of information

for stock assessments.
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Résumé

Nous étudions le contenu informationnel des prix du poisson à la

criée et des coûts d’exploitation dans le but d’estimer l’abondance

des stocks. Notre approche comporte deux volets : dans un premier

temps, nous calculons la biomasse implicite, c’est à dire la biomasse qui,

compte tenu des prix et des quantités débarquées, est en accord avec

un simple modèle d’optimisation des profits. La biomasse implicite

et l’estimation biométrique des stocks sont en concordance sur une

période de 20 ans, puis divergent sur les cinq dernières années. Dans

un deuxième temps, nous utilisons les données annuelles dans le cadre

du modèle autorégressif vectoriel (VAR), du VAR bayésien (B-VAR), et

du modèle vectoriel à correction d’erreur (VEC). Nous incorporons en-

suite les données mensuelles pour une analyse à fréquences mixtes des

séries chronologiques en différence logarithmique, y compris le VAR

bayésien à fréquences mixtes (MF-BVAR) et le modèle de données

échantillonnales à fréquences mixtes (MIDAS). Les incertitudes rel-

atives aux paramètres sont adressées par le biais de régressions et

prévisions bayésiennes. Nous trouvons une corrélation statistiquement

significative entre la mesure d’abondance biométrique et un indice basé

sur les prix, corrélation robuste malgré la considération d’une variété de

facteurs confondants. Nous concluons qu’une interprétation judicieuse

des prix et des quantités débarquées peut produire un complément

d’information rapide et peu dispendieux.
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1 Introduction

Effective and successful stewardship of fisheries relies on accurate stock as-

sessments. The art and science of fish stock assessments rely on complex,

dynamic biomass models that are revised, updated, and recalibrated peri-

odically in response to new observations such as biological data on repro-

duction and mortality rates, food web interactions with other species, and

measures of fishers’ productivity. Like all scientific measurements, biomass

estimates are subject to uncertainty and are therefore reported with confi-

dence intervals. Data collection is also so onerous and time-consuming that

full reevaluations and updates are published only every few years.

Unlike empirical studies of long-term price trends for non-renewable re-

sources dating back to Barnett and Morse (1963), Slade (1982), and Moaz-

zami and Anderson (1994), to the best of our knowledge, the literature

exploring the extent to which price and cost data can usefully signal abun-

dance for a renewable resource such as fish is scant. While market prices are

codetermined by a slew of factors and may also be distorted by regulatory

constraints, proper control for these factors may yield empirical estimates

of a relationship between abundance of species and market-based indicators

that could conceivably constitute a useful ‘minimum information’ tool for

policymakers. When assessments are performed with some regularity, such

a tool could provide timely information on biomass, especially in the wake of

catastrophic environmental events such as oil spills; where biometric stock

assessments are not performed, the approach could serve as a warning of

changing biomass for fisheries.
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Our paper is most closely related to Batstone and Sharp (2003), who

use the asset value of perpetual individual quota rights for the red snapper

commercial fishery in New Zealand waters as a reflection of market partici-

pants’ beliefs about expected future abundance. However, their approach is

restricted to the context of established individual quota rights.

Using the specific case of the northern red snapper1 (Lutjanus campecha-

nus) fishery in the Gulf of Mexico (GoM) as an example, we take a two-

pronged approach: we first look at the implications of a basic microeconomic

model that recognizes that fishers are operating under evolving regulatory

and technological constraints. A Schaefer production function captures the

underlying assumption that biomass abundance affects fishing productivity

and thus the per-unit cost of production. Equally important is the assump-

tion of profit maximization: changing relative prices of inputs and output

may affect fishing intensity and, with it, average productivity. In this ini-

tial approach, we find that the implied biomass, that is, the biomass that is

consistent with profit-maximization under observed prices and costs, offers

a good approximation of stock assessments for the first 20-odd years in our

dataset but diverges significantly thereafter. Specifically, our results point

to decreasing stocks after 2012, at odds with the rapidly increasing stock

assessment estimates for that period, leaving us to speculate on the reasons

for the discrepancy.

In our second approach, we run a battery of multivariate time-series

analyses to further explore the relationship between stock, prices, and costs,

1The northern red snapper is native to the Gulf of Mexico, the Caribbean, and Atlantic
Ocean and is not to be confused with the New Zealand “red snapper” (Centroberyx affinis),
a taxonomically different fish species.
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taking into account other potentially relevant factors, such as the price of

grouper (a substitute in consumption as well as a potential joint output)

and the price of fuel. In-sample and out-of-sample forecasts confirm the

usefulness of the approach. In contrast to our initial findings, this approach

suggests that stock assessments have been consistent with the fishery’s eco-

nomic performance.

Our focus on the GoM’s red snapper fishery is to some extent arbitrary

as the exercise is meant as a mere proof of concept, but it is also justified

by the fishery’s economic importance in these waters and its experiences

with a diverse set of management regimes over the past 30 years. It is

also a politically contentious fishery, pitting commercial interests against

conservationists, fishers against regulators, and commercial fishers against

the recreational fishing industry. Furthermore, there has been some very

recent controversy about this fishery’s true stock size: the March 2021 re-

lease of an independent assessment, the fruit of a 12-million-dollar research

project spearheaded by the Harte Research Institute2 at Texas A&M-Corpus

Christi, surprised fishers and regulators alike by reporting a red snapper

count three times higher than NOAA’s 2018 SEDAR 52 assessment.3 Even

though the newly discovered red snapper populations are located in the low

relief areas of the Gulf of Mexico, which are not targeted by fishers and are

therefore of limited relevance for the proper regulation of the red snapper

fishing industry, fishers have seized on this significantly higher stock assess-

ment to push for an equally significant increase in the total allowable catch

2https://www.harte.org/snappercount
3SouthEast Data, Assessment, and Review (https://sedarweb.org/sedar-52).
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(TAC), the annual cap imposed by the regulator.

The remainder of the paper is organized as follows. We provide some

background information in Section 2, including a brief history of fisheries

management in the GoM, a description of stock assessment methodology,

and a short discussion of the intricacies of measuring fishing effort. In Section

3, we derive the concept of implied biomass and compare it to actual stock

assessment data. We present the data and estimate an index for effort in

Section 4 and the time-series analysis in Section 5. Section 6 concludes with

a discussion.

2 Background

2.1 Management of the Red Snapper Fishery in the GoM

There are several types of externalities in open access fisheries. Particularly

notable is a production externality stemming from the harvesting process,

in which resource stock enters a firm’s production function. Each firm’s

harvest imposes a production diseconomy on other fishers, and vice versa.

This reciprocal stock externality results in excessive fishing effort and over-

exploitation of the resource. In 1976, the Magnuson-Stevens Act required

fishery management councils to consider optimum yield in establishing an-

nual catch limits in order to prevent overfishing. As a consequence, various

methods of regulating the commercial and recreational fishing of red snapper

were instituted in the early 1990s to rebuild the overfished red snapper popu-

lation. These include the imposition of a quota known as the total allowable

catch (TAC), limiting the prosecution of juvenile red snappers by imposing a
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minimum fish size4, and imposing trip limits, i.e., a cap on pounds caught on

a single trip. Initially, the TAC represented a common fishing quota (CFQ)

in that it was enforced by limiting fleet access through seasonal closures.

Regulatory adjustments were made in 2007 by introducing the individual

transferable quota (ITQ) program with the express objectives of reducing

both overcapacity in the commercial fishery and the adverse effects of derby

fishing that were brought about by the CFQ regime. Furthermore, the intro-

duction of the ITQ system also saw the abolishment of previous regulatory

constraints such as trip limits and seasonal closures.

Under the ITQ management system, fishers were initially awarded ded-

icated access privileges5 to a percentage of TAC. These percentages of har-

vesting rights are known as shares.6 The TAC for the year is determined by

the fisheries council. The amount of fish (in pounds) a participant is allowed

to catch is referred to as ITQ allocation and defined as the product of TAC

and shares.7 Quotas have historically been binding; the latest red snapper

ITQ report indicates that the percentage of landings relative to TAC since

inception of the ITQ program ranged from 95.8 to 99.9, with 98.2% as the

average (NMFS, 2020).

An ITQ system eliminates the externality associated with the race-to-fish

4A minimum size limit of 15 inches total length was imposed in 1995, then lowered to
13 inches in 2007.

5Anderson (2006) argues that ITQ management regulation provides dedicated access
to fish, not a right to fish themselves.

6In the case of red snapper in the GoM, these initial catch privileges were awarded to
fishers on the basis of historical landings.

7All allocations expire at the end of the year, and banking of unused allocation is
disallowed. While there is a 6.0203 percent limit on the accumulation and transfer of
ITQ shares a single shareholder is allowed to hold, ITQ allocations are not subjected to
such a limit. Accounts without shares may still participate in the program by obtaining
allocations from ITQ shareholder accounts in the allocation market.
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incentives of common quotas and allows fishers to engage in cost-decreasing,

rather than cost-increasing, competition (Boyce, 1992). Although there are

several variations of ITQ systems, Arnason (1990) argues that the quota

market in an ITQ institutional arrangement is typically a “minimum in-

formation management system” that allows resource managers to achieve

efficiency by relying on decentralized market mechanisms.8

Later, Arnason (2007a) develops a bargaining game model to show that

while ITQ quota holders’ behavior as a group may not be socially optimal

because of information and incentive problems, they nevertheless allow for

more effective management. Elsewhere, Arnason (2007b) describes other

limitations of ITQs; for example, they are often set at an aggregate level over

a finite time period of typically one year. Heterogeneity in the sub-stocks

and fluctuations in the biomass over time make ITQs inefficient. Moreover,

ITQs may not lead to an optimal investment in fishing capital if there are

distortions in the system such as sharecropping, in which labor is paid from

the gross output. The ITQ program has also had mixed success in reducing

overcapacity but was successful in mitigating derby fishing behavior and

preventing TAC overages (NMFS, 2013; Agar et al., 2014).

2.2 Stock Assessment Methods

Abundance in fisheries was initially gauged by mere standardized catch rates

(e.g., Schaefer, 1954). In the case of red snapper, the stock assessment

process gained in sophistication in 1999, when catch-at-age data allowed for

8In a nod to Arnason, as well as to Batstone & Sharp (2003), we use the expression
‘minimum information management’ in the context of biomass estimation, even though
our approach is not limited to ITQ-managed fisheries.
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cohort analysis of the fish population. With the availability of a wider range

of fishery data, integrated stock assessment analysis methods have become

increasingly more complex. Many of the more recent stock assessments in

the U.S., including the 2018 SEDAR 52 red snapper stock assessment, use an

integrated method known as stock synthesis, which relies on a statistical age-

structured fish population modeling framework (Methot & Wetzel, 2013).

The stock synthesis method utilizes variables such as catch per unit of effort

(CPUE); abundance surveys; discards; length, age, and weight composition;

and tag-recapture data.

Hilborn and Peterman (1996) have expressed concerns about uncertain-

ties in the projections of fish stock assessments, which could stem from a

wide range of sources including measurement of the state of fish abundance,

model structure, parameter estimates, regulations, and environmental con-

ditions. While the modeling of stocks has improved over time, some sources

of uncertainty remain. Perhaps the biggest uncertainty for the GoM red

snapper stock assessment, and most assessment models in general, is the re-

lationship between spawning stock biomass and resulting recruitment (i.e.,

the stock-recruitment relationship). Typically, stock assessments assume a

fixed value for stock-recruitment relationships. However, the dynamic of

this relationship can change over time, invalidating the estimated size of the

stock (NMFS, 2013). SEDAR 52 (2018, p.58) acknowledges that while the

constant recruitment assumption may be acceptable for short-term projec-

tions, it may no longer be appropriate for long-term projections. Due to

their reliance on strong assumptions, SEDAR 52 projections must be in-

terpreted carefully and should not be used for equilibrium calculations. In
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other words, regular updates of catch limits are necessary to account for

changes in recruitment dynamics.

At least in the case of GoM red snapper, marine biologists have also ex-

pressed concern about the informativeness of CPUE as a metric for biomass,

viewing it as an unhelpful complement to the large number of fishery-

independent indices available for that species, especially as complex regula-

tions have made CPUE standardization increasingly difficult. Indeed, a sen-

sitivity analysis has shown that removing this variable from the SEDAR 52

base model only had a limited impact on the model’s performance (NMFS,

2020) and, as a result, NOAA marine biologists believe that CPUE indices

should no longer be used in future red snapper stock assessments.

2.3 Measurement of Effort and Empirical Evidence on ITQs

Empirical studies of the effects of ITQs are faced with complexities in the

measurement of effort in fisheries, which has been defined differently in vari-

ous estimations of the capacity and production functions in fisheries. Clearly,

variations and inaccuracies in the measurement of effort have diminished the

reliability of CPUE as stock assessment indicators.

Effort can be viewed as an aggregate (or composite) input made of differ-

ent factors of production. Beverton and Holt (1957) introduce the concept

of relative fishing power (RFP) and discuss the need to standardize effort.

Later, Griffin et al. (1976) argue that effort must be standardized to reflect

heterogeneity in fishing power across water bodies or time. They develop an

effort index relative to a standard vessel, (i.e., an RFP index), using vessel

characteristics such as horsepower and length. Since these seminal works
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were published, standardization of effort has been the subject of many dis-

cussions and applied in several empirical studies of fishery industries, includ-

ing a study by Griffin et al. (1997) in which they apply the concept of RFP

to the GoM shrimp fleet by modifying fishing effort (days at sea) based on

changes in fishing power over time. They consider variables such as vessel

characteristics (horsepower, vessel length, gear type, etc.) as well as the skill

of the captain and the crew to arrive at a standardized measure of effort.

In their study of overcapacity in multi-species fisheries in France, Le

Pape and Vigneau (2001) also deal with the issue of measurement of ef-

fort to create a sustainable balance in resources. They distinguish between

nominal and effective fishing effort, where nominal effort is typically mea-

sured by fishing time or days at sea, while effective effort considers other

factors such as technological progress and strategies such as use of multiple

gears. The authors argue that technological advances such as increases in

the horsepower of the vessel fleet enhance effective effort and contribute to

overcapacity. Their principal component analysis on vessel characteristics

and crew size identifies fishing intensity (amount of gear used simultane-

ously) as the primary cause of variations in nominal fishing effort for fixed

gear vessels, while time is the cause of variations in nominal fishing effort

for mobile gear vessels. They also discover that vessel characteristics affect

monthly fishing time for mobile gear vessels.

Several studies have focused on evaluating the effectiveness of ITQ re-

source management systems in fisheries, including their impact on the fisher’s

choice of effort level. The introduction of the ITQ system in other parts of

the U.S. has led to a reduction in excess capacity by reducing the total num-
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ber of vessels and increasing the number of trips per vessel (Adelaja et al.,

1998; Lian et al., 2010). Initial evidence shows that since the institution

of the ITQ program, the number of both vessels and trips has fallen, as

has the volatility of the number of trips (Agar et al., 2014). A more recent

analysis of the effect of the ITQ on the GoM red snapper fishery suggests

that TAC decreases and a sustained biomass recovery occurred during the

years prior to the regime switch, offering a complementary explanation for

the observed fleet size reduction. Indeed, had the TAC been high relative

to biomass recovery, the regime switch could conceivably have led to new

entries (Dakhlia and Marvasti, 2019).

3 Implied Biomass

3.1 A Basic Model

We base our analysis on the canonical Schaefer (1954) production function

in which per-trip output depends on both biomass Bt and effort et:

yt = qtBte
α
t , (1)

where α is the output elasticity of effort. We assume decreasing returns

to effort, so that 0 < α < 1. Parameter qt is known as the “catchability”

coefficient. Catchability can increase rapidly over time with the introduction

of technological innovations such as radar and sonar or, alternatively, may

decrease if, say, environmental factors cause fish to migrate farther away

from shore, thereby blurring the effect of changing biomass. Here, we make
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the simplifying assumption that catchability progressively improves at rate

r as fleets become more efficient, so that qt = (1 + r)qt−1.

Effort is defined as an aggregate level of variable inputs, since we are fo-

cusing on month-to-month variation, whereas the effect of long-term changes

in fixed inputs (e.g., vessel size) would be captured by the catchability coef-

ficient. Note that under this specification, CPUE, i.e., yt/et, is proportional

to biomass only for the special case of constant returns to effort (α = 1) and

invariant catchability.9

Each firm maximizes annual (operating) profit Π in two separable steps:

It first maximizes trip-level profit πt with respect to per-trip effort

max
et

πt = (1 − `)ptyt − wtet, (2)

where ` stands for the share of revenue paid to labor under the generally

practiced lay system, pt is the market price of output, and wt is the unit

price of effort.

In the second step, the firm maximizes annual profit Π by deciding on

the number of trips per year T ,

max
T

Π = Tπ?t − E(T ), (3)

where E stands for (largely unobserved) effort such as maintenance, wear

and tear, as well as risk-taking, associated with the higher probability of

fatal and non-fatal injuries when taking more trips in a year and finding it

9Maunder et al. (2006) discuss how CPUE data can be a misleading measure of biomass
when, among other things, changing catchability is not properly factored in.
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more difficult to avoid dangerous weather conditions.

This conceptual separation of profit-maximization into two distinct steps

clarifies our focus on trip-level decisions and trip-level cost data. Indeed,

the first-order condition for a profit maximum with respect to T (E′(T ) =

πt) yields no additional information on biomass under the simplifying (but

standard) assumption that biomass remains constant in the short run within

each one-year period.10

3.2 The Open-Access, Unregulated Case

While our data do not cover the pre-1990 period of unregulated access, the

open-access case nevertheless offers a simple framework to derive a basic

relationship between price and biomass. From the first-order condition with

respect to effort et, we obtain

yt = (qtBt)
1

1−α

(
α(1 − `)pt

wt

) α
1−α

(4)

so that implied biomass is given by

Bt =
1

qt

(
wt

α(1 − `)pt

)α
y1−α
t , (5)

simply stating that the relationship between biomass and trip-level output

is (1) nonlinear and (2) affected by the (net) price of output and the per-

unit cost of effort. Thus, while prices are assumed to be exogenous to

individual fishers, they are nevertheless key modifiers of the relationship

between biomass and output.

10E.g., see Zhang & Smith (2006).
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Note that since wt/(α(1 − `)pt) = yt/et, we can equivalently write

Bt =
1

qt

(
yt
et

)α
y1−α
t , (6)

so that the implied biomass can also be inferred from a nonlinear function

of CPUE and output.

3.3 The CFQ with Trip-Limit Case

For the red snapper fishery, the CFQ period was marked by two concurrent

regulatory restrictions: the TAC and per-trip catch limits set at 2,000 lb. for

Class 1 and at 200 lb. for Class 2 permit holders.11 As shown in Figure 1a,

the 2007 increase in trip-level output by vessels targeting red snapper, when

the CFQ management regime was replaced by ITQs and per-trip catch limits

were abolished, suggests that the trip limits had generally been a binding

constraint.
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Figure 1: (a, left) Per-trip landings by vessels targeting red snapper (an-
nual). (b, right) Number of trips (monthly)

Trip-level output was then arguably not affected by ex-vessel red snapper

prices, as long as revenue exceeded variable costs. In other words, because

11These trip size restrictions were introduced in 1992, although the corresponding Class
1 and 2 licenses were only introduced in 1998.
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of binding regulatory constraints, catch prices may have had little bearing

on the optimal allocation of resources in response to biomass scarcity.

A fisher’s annual catch, then, would be determined by the number of

fishing trips. Because of the common-pool nature of CFQs, fishers had an

incentive to take these trips in rapid succession to maximize their share

of TAC. (See Figure 1b.) This race for fish would lead to costs such as

an increased risk of accidents as well as wear and tear on equipment that

were not systematically captured by logbook entries. However, as shown in

the Appendix, the intensity of derby fishing has no implication for implied

biomass that could be easily exploited with our limited data, so we must fall

back onto far simpler considerations: Since per-trip output is determined

by trip limits, not by the price of catch, we can restrict our attention to the

average variable costs defined at the trip level. Specifically, letting ȳt denote

the per-trip catch limit, if estimates of trip-level average variable cost ct are

available, then

ctȳt = wtet = wt

(
ȳt
qtBt

)1/α

, (7)

so that implied biomass is given by

Bt =
1

qt

(
wt
ct

)α
ȳ1−α
t . (8)

Since wt/ct = yt/et, we can equivalently write

Bt =
1

qt

(
yt
et

)α
ȳ1−α
t , (9)
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i.e., the implied biomass can again be inferred from a nonlinear function of

CPUE and output.

3.4 The ITQ Case

The ITQ case is more straightforward, in particular because the cap on

per-trip catch was abolished when the ITQ regime was introduced in 2007.

Under the ITQ, management chooses an annual total allowable catch (or

quota), TAC, and the per-pound allocation is traded in a free market. De-

noting kt the price of a one-pound allocation, the price net of allocation and

labor’s share of revenue is (1 − `)(pt − kt). The first-order condition for a

profit maximum then yields

yt = (qtBt)
1

1−α

(
α(1 − `)(pt − kt)

w

) α
1−α

, (10)

so that implied biomass is given by

Bt =
1

qt

(
wt

α(1 − `)(pt − kt)

)α
y1−α
t , (11)

which, save for the cost of allocation, is similar to the open-access case.

3.5 Calculation of Implied Biomass

Our monthly price, cost, and landings data, which we present in more detail

in Section 4.1, allow us to calculate each period’s implied biomass as derived

in equation (8) for the 1993-2006 CFQ and equation (11) for the 2007-2017

ITQ regime. Our estimate for the output elasticity of effort is α = 0.86 (st.
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err. = 0.04), but we conduct a sensitivity analysis and calculate implied

biomass for a wide range of values for α. Intuitively, the greater α, the

greater the role of prices in gauging biomass. Furthermore, we assume an

annual rate (r) of technological progress equal to a low 1% per year, a small

figure aimed at attributing most gains in output to biomass growth.12 We

also calibrate the initial catchability parameter (q1993) such that our implied

biomass matches the 1993 SEDAR 52 stock assessment.

As shown in Figure 2, in all cases the 12-month moving average of our

computed implied biomass tracks SEDAR 52’s annual stock assessment esti-

mates rather closely until 2011, but then diverges from it sharply by pointing

to an actual decline from 2012 on.

We are left to conjecture on the reasons for this divergence of the 2012-

2017 estimates based on a simple microeconomic model from SEDAR 52’s

biometrically assessed stock. Rather than question the SEDAR 52 data,

which is outside our area of expertise, we restrict our attention to the eco-

nomic model. For instance, our model assumes a uniform and constant fleet,

ignoring questions of entry and exit into the fishery. However, accounting

for structural changes in which the least efficient vessels can exit the fleet

would only further displace the role of biomass in any observed productivity

gains. Furthermore, given that fishing trips are characterized by significant

upfront fuel costs of traveling from port to fishing grounds and back, our

12The extant literature reports a rather wide range of growth rate estimates, though:
Tidd et al. (2016) find an average 3.8% increase in the Western Pacific purse-seine fleet’s
productivity (Malmquist index) over the 1993–2010 period. Ritzau et al. (2014) estimate
that catchability increases by 3.2% per year due to technological developments. Kim et al.
(2012) estimate an average 6% drop in the total factor productivity of 12 Korean offshore
fisheries over the 1997-2009 period, the change ranging from a 16.6% drop of the trawl
fishery and a 4.8% increase of the long line fishery.
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model may be challenged for its assumption of a globally concave trip-level

production function, although an economies of scale argument would help

explain the large gains in productivity brought about by the abolishment of

trip limits in 2007, but not the drop some five years later. Our results may

also be due to incomplete or inaccurate cost data, although data quality ar-

guably improved over time as data collection protocols were refined. Finally,

catchability,13 rather than biomass per se, may have progressively decreased

after 2012, possibly as a delayed consequence of the Deepwater Horizon oil

spill in 2010, as suggested by Ainsworth et al. (2018), who estimate that the

biomass of large reef fish may have decreased by 25% to 50% in the areas

most affected by the spill.

4 Data and Measurement of Effort

Given that CPUE has been a standard, though contentious, metric for abun-

dance, we start by estimating a more general trip-level Cobb-Douglas pro-

duction function for red snapper that, in line with usual CPUE calculations,

takes into account both fixed (vessel characteristics) and variable (fuel and

labor) inputs. This allows us to compare the resulting CPUE with the im-

plied biomass calculations of the previous section.

We then proceed with a deeper empirical analysis of the relationships

over time between prices, costs, and SEDAR estimates of species abundance

and run a battery of time-series analyses that take into account additional

variables such as the price of grouper, which is a joint output (as well as a

13See Wilberg et al. (2009) for a survey of the use of a time-varying catchability param-
eter.
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substitute for red snapper in terms of consumption), and dummy variables

for policy changes.

The relationship between biomass and price is complicated by TAC

changes as well as lags between policy changes and biological outcomes. In

open-access fisheries, the relationship between biomass and price tends to be

more predictable: increasing biomass improves productivity and increases

landings, which in turn places a downward pressure on price. To the extent

that high landings deplete biomass in the long run, landings would again fall

and prices rise. In regulated fisheries like red snapper in the GoM, however,

the stock dynamics are directly affected by changes in TAC, a policy variable.

When biomass is declining, the fishery council typically lowers the TAC to

ensure sustainability, and prices rise as a result. As biomass recovers under

the restrictive TAC, we may observe a positive contemporaneous correla-

tion between biomass and price. Conversely, once the stock has sufficiently

recovered, the council may increase the TAC to accommodate fishers’s de-

mands for a larger harvest. This condition produces a positive relationship

between biomass and TAC, but a negative relationship between biomass and

price. In short, the contemporaneous relationship between stock abundance

and prices may depend on TAC changes both past and present. The po-

tentially ambiguous relationship between price and biomass is illustrated in

Figure 3b, which shows the log-difference of the two series.

4.1 Data

We compile a large array of data on the GoM red snapper fishery. Based

on the availability of the various data components, the analysis covers the
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Figure 3: (a, left) Commercial TAC. (b, right) Log difference of TAC vs.
Bio-3.

25-year period from January 1993 to December 2017. Landings and ex-

vessel prices for whole fish are obtained from the NMFS, Southeast Coastal

Fisheries Logbook Program, which is available for different bodies of water

in the GoM. Prices are converted into real terms using the consumer price

index, with 1984 as the base year.

The red snapper management unit in the GoM, controlled by the GoM

Fishery Management Council, extends from the United States-Mexico bor-

der in the west through the northern Gulf waters and west of the Dry Tor-

tugas and the Florida Keys. The annual stock assessment data are obtained

from the Southeast Data Assessment Review 52 (SEDAR 52, 2018) process.

We use the estimates for two measures of stock abundance: total biomass

(Bio-0 or B0), measuring the weight of fish of all ages, and the biomass of

fish that are at least three years of age (hereafter, Bio-3 or B3). The three-

year age limit is consistent with the minimum fish size constraint often in

effect. Population estimates are provided separately for the East and the

West Gulf, separated roughly by the Mississippi River, as SEDAR red snap-

per assessments have identified differences in population trends for the two

regions. The log of West Gulf total stock abundance is shown in Figure 4a
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shows, while stock growth is shown in Figure 4b.
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Figure 4: (a, left) Log of Bio-0. (b, right) Growth rate of Bio-0.

We match the West Gulf stock assessment data with the Florida Gulf

Coast ex-vessel price data, pt, which is the only complete historical price

series.14 Figure 5a shows the log of pt and Figure 5b its growth rate.
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Figure 5: (a, left) Log of real pt, 1984=100. (b, right) Growth rate of pt.

In line with the theoretical model presented in Section 3, we employ a

(log-transformed) time series of an input price index, as well as a “price-cost”

(PC) variable that corresponds to the denominators in equations (8) and

(11), namely the average variable cost of production (not including labor)

for the CFQ case and the net price after paying for labor and allocation cost

14Price data are missing for all other GoM states, especially for Mississippi and Alabama:
the percentages of missing price observations for Alabama, Louisiana, Mississippi, and
Texas are 25, 15, 25, and 9, respectively. Note that GoM commercial red snapper fishing
activities primarily take place in the Western part of the Gulf, off the coast of Florida.
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for the ITQ case:

PCt =





ct for 1993-2006

α(1 − `)(pt − kt) for 2007-2017.
(12)

The input price index (CI) is defined as the convex combination of the #2

diesel fuel price index (for one third), since diesel accounted for roughly

one third of non-labor variable costs in 1993 (as well as on average), and

the consumer price index (for two thirds) to account for price variations in

other non-labor variable inputs such as ice, bait, and groceries. PC and CI

are shown in Figures 6a and 6b.
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Figure 6: (a, left) Price-Cost variable. (b, right) Input price index.

4.2 Effort and CPUE

In order to measure fishing effort, compute CPUE, and examine its relation

to red snapper abundance, we use data on crew size, vessel holding capacity,

vessel length, horsepower, days at sea, and landings. The vessel charac-

teristics dataset comes from NMFS’s vessel registration Permit Information

Management System (PIMS), and the landing data are from the South-

east Coastal Fisheries Logbook Program. Following Griffin et al. (1976), we
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consider a Cobb-Douglas type production function,

ln LAt = α0 + α1 ln HPt + α2 ln VLt

+ α3 ln HCt + α4 ln CSt + α5 ln DSt + εt, (13)

where LA, HP, VL, HC, CS, and DS stand for landings, horsepower, ves-

sel length, holding capacity, crew size, and days at sea, respectively. For

homogeneity of fishing technologies, we focus on vessels using vertical-line

and longline gears, which account for close to 98 percent of red snapper

landings. Based on the unit root test results, we estimate equation (13)

in a log-differenced manner. Production function estimates are made us-

ing annual and monthly data, allowing us to use the effort index in both

the subsequent annual and mixed-frequency VAR estimations. The least-

squares estimates for both the annual and the monthly data are reported in

Table 1.

On the basis of the Akaike Information Criterion (AIC), Model 2 offers

a superior fit for annual data, while Model 1 offers a better fit for data with

monthly frequency. However, the value of the Durbin-Watson (DW) statis-

tic in Model 1 suggests serial correlation, which, based on the correlogram

of the residuals, is resolved in Model 2. We therefore select Model 2 for

both data frequencies. The estimated production function coefficients are

then used to construct both annual and monthly effort indices. Moreover,

although the coefficients of a few variables in equation (13) are negative due

to multicollinearity, unlike Del Valle et al. (2003)15, we choose not to com-

15To demonstrate the inadequacy of the TAC, Del Valle et al. (2003) estimate a primal
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Table 1: LS Estimates of Production Function

Annual Monthly
Variables Model 1 Model 2 Model 1 Model 2

HPt −0.3120 0.3310a −1.4254a −1.3595a

(0.5052) (0.5534) (0.2816) (0.1923)
VLt 3.5102b 3.5679b 5.7975a 7.3844a

(1.4057) (1.4843) (0.7697) (0.4511)
HCt 0.0100 −0.0008 −0.0227 −0.0130

(0.0125) (0.0093) (0.0220) (0.0115)
CSt 0.5280 1.2167b 0.5662 0.6902c

(0.4698) (0.5831) (0.5195) (0.3699)
DSt 0.3608c 0.5430c −0.7217a −0.7857a

(0.1924) (0.2997) (0.1265) (0.0826)
AR(1) − −0.6228c − −0.5102a

(0.3317) (0.0276)
Constant 0.0382 0.0186 0.0073 0.0069

(0.0233) (0.0194) (0.0369) (0.0232)
Adj. R2 0.38 0.5 0.38 0.52
F- Stat. (prob.) 3.87(0.01) 4.31(0.01) 37.74(0.00) 47.85(0.00)
AIC −1.79 −1.93 1.96 1.7
DW 2.66 2.22 2.89 2.17

a, b, c denote statistical significance at the 1, 5, 10% levels, respectively.
Standard errors are in parentheses.

bine input variables as they are merely used to develop the effort index.16

Table 2 reports the descriptive statistics for the variables used in equa-

tion (13) as well as the Augmented Dickey-Fuller (ADF) and Phillips-Perron

(PP) unit root test results. All variables have unit roots and become sta-

tionary when the first difference is taken. From the orders of magnitude of

the variables and the estimated coefficients, it is apparent that vessel length

production function for the anchovy fishery in Europe, which includes fishing effort as an
index of boat days, vessel characteristics (gross registered tonnage and horsepower), and
fishers’s skill as inputs. However, due to the nature of the data, the authors could not
employ a varying measure of stocks.

16There is strong evidence of multicollinearity among the elements of the production
function. The simple correlation coefficient between vessel length and crew is 0.99; 0.97
between holding capacity and horsepower. Also, the variance inflation factors (VIF) for
vessel length, holding capacity, horsepower, and crew are 0.97, 0.97, 0.97, and 0.96, re-
spectively. However, since the objective is to generate an effort index and no inferences are
made regarding the individual coefficients, we chose to maintain all standard production
function variables in the model.
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is the most influential variable in the effort index.

The vector product of the estimated coefficients and the log-differenced

values of the model variables used in equation 13 defines an index for the

growth of fishing effort, shown in Figure 7a. The 6-month moving average

of the conversion into a level variable is shown in Figure 7b. The graphs
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Figure 7: (a, left) Monthly growth of effort. (b, right) Effort index (6-month
mov. avg.).

document that the ITQ regime greatly reduced fluctuations in fishing effort

but did not reduce the overall level of fishing effort.17 The Bai-Perron test is

applied to examine up to five structural breaks in the variance of the series.18

17A similar observation can be made for the price time series shown in Figure 5, the
2007 switch to the ITQ system introducing a new regime of low price volatility.

18Table 2 shows that the annual and monthly effort indices are both stationary and
appear to have a constant zero mean (0.007). Also, Table 3 suggests that the annual effort
index is nearly normally distributed where skewness is -0.40, kurtosis is 3.14, and J.B. is
0.62 (prob. 0.73). However, the annual effort index deviates from a normal distribution:
skewness is 0.62, kurtosis is 9.86, and J.B. is 606.60 (prob. 0.00). Finally, a Wald test
Chi-square statistic for the constant (0.08, prob. = 0.78) and for trend (0.07, prob. =
0.79) reject the presence of a trend or a constant in the annual data. The Wald test also
rejects the presence of a constant (0.01, prob. = 0.92) or a time trend (0.00, prob. =
0.98) in the monthly data. Assuming a constant mean, the following Bai-Perron multiple
structural change test with a constant is applied for the existence, number, and timing of
breaks in the transformed values of the effort index into variance:

yt = x′tq + z′tδj + µt, where t = Tj−1 + 1, . . . , Tj for j = 1, . . . ,m+ 1.

Here yt is the dependent variable, xt(p . . . 1) and zt(q . . . 1) are vectors of covariates, q
and δj(j − 1, . . . ,m + 1) are coefficient vectors, and µt is the error term. More detailed
information can be found in Bai and Perron (2003).
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The resulting sup F statistic for the monthly effort index is 0.56 and WD max

F is 1.75, thus rejecting any statistically significant structural break. For

the annual effort index, the Bai-Perron test sup F statistic is 11.03 and WD

max F is 46.68, pointing to the presence of multiple structural breaks. We

could not identify a unique structural break in either of the two measures of

effort data, suggesting that changes in effort have occurred gradually rather

than as a sudden shift with the 2007 introduction of the ITQ program.

Because days at sea is an important component of the effort index, we

present it separately in Figure 8a, corroborating the observation that fluc-

tuations in effort greatly decreased after the inception of the ITQ system.
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Figure 8: (a, left) Trip duration in days. (b, right) Log difference of trip
duration.

CPUE, calculated as the ratio of landings to the estimated effort index,

is generally increasing, in particular so after 2012, putting into stark relief

the divergent inferences between our previous, price-informed approach and

one merely based on the ratio of physical quantities.

30



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

0

200

400

600

800

1,000

1,200

1,400

1,600

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

CPUE2_SAMI_NEW

Time

CP
UE

Figure 9: 6-month moving average of CPUE.

5 Time-Series Analyses

5.1 Methodologies

The mixed-frequency nature of the data—stock assessment data are annual

while all other data are monthly—presents an empirical challenge. Hav-

ing established that all time series are stationary after first-differencing, we

first employ the traditional method of aggregating the high-frequency data

to obtain a balanced dataset with a common frequency. We start with a

standard VAR model and then, to account for parameter uncertainty, em-

ploy Bayesian VAR regression. Neither provides useful results, which we

attribute to the loss of information from the conversion of high-frequency

variables to the lowest frequency.

As a solution, we turn to mixed-frequency approaches, namely MF-

BVAR with Wishart prior and MIDAS. In addition, we deal with the mixed-

frequency nature of the data by using the annual data in the cointegration

technique, which is concerned with long-run equilibrium (Granger, 1988).

Here, the dynamics of the Vector Error Correction (VEC) model traces the
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movement of the variables in any period to the previous periods’ deviation

from the long-run equilibrium of the cointegrated series.

For completeness, we briefly review the time-series models used in this

study.

Standard VAR

Standard VAR models require all variables in the VAR to have the same

frequency. The standard (unrestricted) VAR in reduced form is specified as:

yt = ϕ0 + πtyt−1 + · · · + πpyt−p + ϕ1xt + µt, (14)

where yt is a vector of endogenous variables, xt is a vector of exogenous

variables, and µt is a white-noise disturbance. Here, since only lagged val-

ues of the endogenous variables appear on the right-hand side of the VAR

equations and innovations are assumed to be uncorrelated with lagged in-

novations and the exogenous regressors, standard orthogonality conditions

hold and the least-squares method yields consistent estimates.

Bayesian VAR

The B-VAR approach deals with over-parametrization of VAR, especially

when data are limited, by applying priors as a logical and consistent method

of imposing parameter restrictions in order to shrink the unrestricted model

into a more parsimonious one. For this purpose, the B-VAR approach uses

a set of prior beliefs that are formed using evidence contained in the data.
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The B-VAR model for the M -vector of endogenous variables, i.e., yt =

(y1t, y2t, . . . , yMt)
′, and p number of lags can be written as:

yt = δ0 +

p∑

j=1

Ajyt−j + γpFt + εt, (15)

where δ0 is a vector of intercept coefficients, Aj is a matrix of lag coefficients,

γt is a vector of exogenous variables, and εt is an M -vector of errors where

εÑ(0,Σ) (Koop and Korobilis, 2010). A few priors are tested in B-VAR

estimates. Based on the RMSE of the forecast, we select the normal Wishart

prior, which assumes normality of the covariance matrix but relaxes the

assumption of the posterior being known.

Mixed-Frequency Bayesian VAR

Here, the interest is in the dynamic relationship between variable yt, which

has an annual frequency, and variables mt, which have a monthly fre-

quency. The VAR contains kL variables yiL observed at low frequency and

kH variables yiH observed at high frequency. Let yiL,tL represent the ith

low-frequency variable observed during low-frequency period tL, and yiH,tH

represent the ith high-frequency variable observed in the tth high-frequency

period during low-frequency period tL. A mixed-frequency VAR model, as

developed by Ghysels (2016), can thus be written by stacking the kL and

kH variables into matrices yL and yiH respectively as:
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where Πa,b
j is kH × kH , Πm+1,b

j is kL × kH , and Πa,m+1
j is kH × kL, for

all j, a, b = 1, . . . ,m, and Πm+1,m+1
j is kH × kL. The Ghysels model uses

a prior similar to that of Litterman/Minnesota for external distributional

information for the parameters, which leads to simple posterior inference

with a normal distribution. While the Litterman/Minnesota prior does not

include a full Bayesian treatment of Σ as an unknown parameter (Koop and

Korobilis, 2010), the Ghysels prior has a subtle difference in allowing for

cross-frequency variances.

MF-BVAR is sensitive to the choice of hyperparameters (Schorfheide and

Song, 2015). We select the default of 5 for λ1, which measures the overall

tightness of the prior. The ideal number of observations in the frequency

conversion is 12, which is consistent with the dynamic of the annual/monthly

system.

MIDAS

We apply a MIDAS regression for time-series analysis of data at different

frequencies where conditional expectations are specified as a distributed lag

of regressions recorded at some higher sampling frequency. To capture the

dynamics of the series, a conventional approach of an Almon polynomial

distributed lag (PDL) regression includes a lagged dependent and current
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and lagged independent variables (Ghysels, et al., 2009; Andreou, et al.,

2013; Ghysels, 2016).19 Here, we are interested in the dynamic relation-

ship between variable yt, which has an annual frequency, and variables mt,

which have a monthly frequency. Adapting the multivariate linear MIDAS

regression model by Ghysels, Santa-Clara, and Valkanov (2004),

yt = q0 +
P∑

i=1

φiyt−P +
n∑

i=1

qim
Ki(θi, L)xKit,i + νt, (17)

where φi is a matrix of lag coefficients and xt is a vector of n right-hand

time-series variables sampled with Ki periodicity. In other words, xKit,i is

sampled 1/Ki times for each yt period. In our case of annual and monthly

data, equation (17) is a projection of yearly yt onto monthly data xKit,i us-

ing up to 12 monthly lags. The overall impact of each of the lagged xKit,i

variables on yt is captured by parameters qi. The lag coefficient in (θi, L) of

the corresponding lag operator L is parameterized as a function of a small

dimensional vector of parameters θ, where θ is the weight. The MIDAS

Almon PDL method uses a weighted regression that takes a number of the

higher-frequency variables and fits them into a lower-order polynomial. The

PDL weighting function is also used to place restrictions on lag coefficients

in an autoregressive model where for each high-frequency lag up to k, the

regression coefficients are modeled as a P -dimensional lag polynomial in

the MIDAS parameters θ. The maximum number of lags is set at 12 and

the polynomial (P ) degree is 2, except in the presence of singularity, when

polynomial degree 1 is used. In contrast to MF-VAR, MIDAS offers a more

19The number of observations is insufficient to run an unconstrained distributed lags
model (U-MIDAS).
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parsimonious model with fewer parameters to be estimated.

Vector Error Correction

In this approach, the Johansen (1995) cointegration test is first conducted to

ensure the existence of cointegrating equations. The VEC model, which is a

restricted variation of the VAR model, is then used with an error correction

term for each cointegrating equation. For example, if the series follows a

standard ADF test specification where:

∆yt = α+ δt+ ρyt−1 + λ∆yt−1 + et, (18)

that has a mean and a time trend but the cointegrating equations have only

intercepts, the VEC becomes:

∆y1,t = δ1 + γ1(y2,t−1 − µ− qy1,t−1) + e1,t, (19)

and

∆y2,t = δ2 + γ2(y2,t−1 − µ− qy1,t−1) + e2,t, (20)

where µ is the mean and et is the error term. The VEC model attempts

to correct for et through a series of short-run adjustments such that the

behavior of the variables converges to their cointegrating relationship.
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5.2 Regression Results and Forecasting Evaluations

We begin with a näıve system that focuses on the Bio-0 stock measure and

the price-cost variable (PC) defined in equation (12), the primary focus of

the empirical analysis. In subsequent models, we progressively add control

variables. In Model 2, we follow the results from the theoretical model’s

equations (8) and (11) by adding landings and the input price index. We

add the ITQ dummy variable in Model 3 and the price of grouper (PG)

in Model 4.20 Because of singularity errors due to linear correlations and

limited degrees of freedom, other control variables such as the TAC reduction

dummy and trip length TL were not added to the system. The process is

then repeated for the Bio-3 stock.

Analysis of the data based on each estimation method is followed by

in-sample and 2-step-ahead (h = 1, 2, i.e., a two-year forecast horizon) out-

of-sample forecasts based on the best fit. The forecasting evaluation that

follows can be thought of as a model validation procedure. We use a static

forecast where the actual value of the dependent variable is used for each

subsequent forecast, which reduces the margin of errors.

While longer time-series data might have improved the estimates, we find

the first three models (VAR, B-VAR, and MF-VAR) to be poor fits for the

data and insufficiently reliable for forecasting: the coefficients of most vari-

ables, except the lagged dependent variable, are statistically insignificant,

while the adjusted R2 in some cases is negative. The results from these

20We excluded imports from the VAR analysis because we expect the effect of imports to
be reflected in domestic prices. Empirical findings on the relationship between the prices
of imported and domestic fish also confirm market integration and the law one price in
fisheries (Asche, et al., 2004 and 2012).
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models have been relegated to Tables A1, A2, and A3 in the appendix.

MIDAS

The least-squares estimates of the MIDAS PDL models are reported in Ta-

bles 3 and 4. The Almon PDL lag lengths are selected based on their

statistical significance.21 The residual autocorrelations are also examined to

make sure that they are white noise. PDL1 produces highly significant re-

sults for the Bio-0 system in all model specifications. The PDL2 coefficient

is also statistically highly significant in the first three model specifications.

The sign of the coefficients for PC confirm the negative correlation between

stock biomass and the price-cost variable. We examine the root of the char-

acteristic polynomial for the stability condition of the VAR systems. The

necessary and sufficient condition for stability is that all characteristic roots

lie inside the unit circle. The characteristic polynomial is of full rank, and

all variables are stationary. We find no root lies outside the unit circle for

any model specifications, so the stability condition is met.

The three most common measures of predictive accuracy based on loss

functions, namely Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), and the Theil inequality coefficient, are reported in Tables 3 and

4. While MAE is dependent on the scale of the dependent variable, it is

less sensitive to large deviations than is RMSE. The Theil inequality coeffi-

cient measures the RMSE in relative terms. Therefore, the Theil inequality

coefficient is scale invariant and lies between zero and one, where one is a

21While there is a potential problem with multicollinearity when standard distributed
lag models are used, Almon PDL used in a MIDAS regression prevents this problem.
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Table 3: MIDAS Almon PDL: Bio-0

Annual Monthly
Model 1 Model 2 Model 3 Model 4

Full-Sample MIDAS:
PC (PDL1) −0.1142a −0.1036a −0.1232a −0.0815a

(0.0350) (0.0292) (0.0406) (0.0221)
PC (PDL2) 0.0163a 0.0194a 0.0352a 0.0011

(0.0039) (0.0050) (0.0185) (0.0034)
CI (PDL1) −0.1975b 0.9397a 0.7059b

(0.0895) (0.3227) (0.2584)
CI (PDL2) 0.0758a −0.3991a −0.3880a

(0.0191) (0.1278) (0.1238)
LA (PDL1) 0.0005 −0.0418a 0.0177b

(0.0128) (0.0114) (0.0073)
LA (PDL2) 0.0057 −0.0043a −0.0050a

(0.0042) (0.0012) (0.0010)
ITQ (PDL1) −1.2206 2.1551

(2.7079) (2.3033)
ITQ (PDL2) 0.4439 −0.2229

(0.5286) (0.6394)
PG (PDL1) −52.0509a

(9.7273)
PG (PDL2) 15.1549a

(3.0349)
Adj. R2 0.84 0.90 0.90 0.96
Log Likelihood −52.41 −43.47 −42.03 −29.85
AIC 4.70 4.29 4.34 3.49

In-Sample Forecast:
RMSE 2.1487 1.4805 1.3943 0.8394
MAE 1.6979 1.1922 1.0190 0.7308
Theil Inequality Coeff. 0.8500 0.7041 0.6858 0.3039

Out-of-Sample Forecast:
RMSE 0.8900 0.3565 3.1198 0.8394
MAE 0.8393 0.3564 3.0724 0.7308
Theil Inequality Coeff. 1.4099 0.4318 4.4885 0.3039
Stability Test Yes Yes Yes Yes

Note: Automatic lag selection, max lags=12. a, b, and c denote statistical
significance at the 1%, 5%, and 10% levels, respectively. Standard errors are
in parentheses.
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Table 4: MIDAS Almon PDL: Bio-3

Annual Monthly
Model 1 Model 2 Model 3 Model 4

Full-Sample MIDAS:
PC (PDL1) −0.0954b −0.0765b −0.0826a −0.1054a

(0.0389) (0.0299) (0.0279) (0.0228)
PC (PDL2) 0.0139a 0.0051 0.0081 0.0141a

(0.0042) (0.0052) (0.0048) (0.0029)
CI (PDL1) −0.2356b −0.1588c −0.0874

(0.0926) (0.0827) (0.0670)
CI (PDL2) 0.0930a 0.0802a 0.0437b

(0.0180) (0.0166) (0.0160)
LA (PDL1) 0.0154 0.0130 0.0026

(0.0112) (0.0087) (0.0091)
LA (PDL2) −0.0015 −0.0032b −0.0029b

(0.0024) (0.0013) (0.0015)
ITQ (PDL1) 5.2814b 7.3066a

(2.3345) (1.8296)
ITQ (PDL2) −0.7409b −1.0296a

(0.3450) (0.2710)
PG (PDL1) 5.0516

(11.5206)
PG (PDL2) −13.0960b

(6.7336)
Adj. R2 0.84 0.93 0.95 0.97
Log Likelihood −55.05 −42.54 −37.56 −30.42
AIC 4.92 4.21 3.96 3.54

In-Sample Forecast:
RMSE 2.3982 1.4238 1.1570 0.8593
MAE 1.9791 1.4105 0.9770 0.7301
Theil Inequality Coeff. 0.5732 0.3377 0.2165 0.4876

Out-of-Sample Forecast:
RMSE 0.9918 1.4276 2.7952 2.7940
MAE 0.7711 1.1363 2.5223 2.7935
Theil Inequality Coeff. 0.1372 0.3255 3.4668 2.6504
Stability Test Yes Yes Yes Yes

Note: Automatic lag selection, max lags=12. a, b, and c denote statistical
significance at the 1%, 5%, and 10% levels, respectively. Standard errors are
in parentheses.
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perfect fit. Based on the value of AIC, Model 4 offers the best fit estimate

of the MIDAS regression for Bio-0. A comparison of the MAE and Theil in-

equality coefficient values across the four model specifications also suggests

that Model 4 provides the best in-sample and out-of-sample forecasts.

Since the effect of the biomass stock regressor on price happens over time

rather than once, PDL coefficients are essentially lag weights and together

comprise the lag distribution of the effects. In other words, PDL coeffi-

cients capture the dynamics of marginal effects and provide insight on the

magnitude and timing of the effect of changes in biomass. The immediate

effect of an increase in Bio-0 in Model 3, for example, is a drop in PC. The

cumulative effect is the sum of the coefficients and represents the long-run

effect. Therefore, based on the reported results for the PDL coefficients in

Table 3, Bio-0 and PC are negatively correlated in the long run. In fact, the

results from all model specifications suggest a similar effect.22

Turning to the more selective Bio-3 measure of abundance, PDL2 again

generates the best fit. Based on the value of AIC, Model 4 offers the best fit.

Based on the value of MAE, Model 4 also offers the best fit for in-sample

forecasts of Bio-3 stock, while Model 1 outperforms others for out-of-sample

forecasts. Model 4 estimates are used for in-sample forecasts of (growth

of) Bio-0 and Bio-3 and are shown in Figures 10a and 10b, respectively.

The forecasts fairly closely follow the actual biomass changes. We also used

22The initially negative correlation between biomass and price may reflect a drop in
TAC to rebuild the stock; then, as the stock recovers, TAC rises and the price drops.
In fact, in alternative model specifications (not included in Tables 3 and 4) where ITQ
is replaced with TAC-R, a TAC-reduction dummy, due to singularity, the coefficient of
TAC-R points to an initial inverse relationship between TAC and biomass. As time passes,
the relationship becomes positive, reflecting increases in TAC as stocks recover.
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Figure 10: In-sample forecasts of Bio-0 growth (a, left) and Bio-3 growth
(b, right)

Model 4 estimates for 2-step-ahead out-of-sample forecasts of (growth of)

Bio-0 and Bio-3, which are presented in Figures 11a and 11b, respectively.

While the forecast for 2016 Bio-0 is fairly accurate, the model predicts a
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Figure 11: Out-of-sample forecasts of Bio-0 growth (a, left) and Bio-3 growth
(b, right)

much higher total biomass in 2017 than the SEDAR 52 estimate. Figure 11b

shows a similar pattern for the out-of-sample forecast of Bio-3 for 2016 and

2017. Reduction in predictive accuracy as the time horizon increases is

common in forecasting.

While the focus in forecasting is generally on a model’s predictive ability

rather than on the control variables’ estimated coefficients, we nevertheless

briefly discuss the estimated signs. We expect a positive sign for the input

cost index, which controls for changes in input prices, causing a shift in the

42



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

cost function (stock-PC relationship). While the Bio-0 Model 2 estimate

in Table 3 has the wrong sign, the sign is as expected in Models 3 and 4,

which take into account the price of grouper. However, in the Bio-3 models

shown in Table 4, none the models yield positive estimates for the input

price index.

Since increases in stock biomass are expected to increase landings per

trip, the coefficient for landings is expected to be positive, which is the case

for all specifications except the Bio-0 Model 3. The sign for the price of

grouper is negative, and the sum of the PDL1 and PDL2 coefficients for this

variable is rather high, suggesting that increases in the price of grouper deter

fishing for red snapper. Most of the ITQ effect is likely to have been captured

by the shift in the PC variable, when the right to fish red snapper begins

to have a market value. While the coefficient for the ITQ dummy variable

is statistically insignificant in Models 3 and 4 of the Bio-0 estimates, its

coefficient is positive and highly significant in the same model specification

for Bio-3.

In summary, because the VAR, B-VAR, and MF-BVAR regression mod-

els produce statistically insignificant results, we focused on the MIDAS es-

timates. A review of the empirical literature on mixed-frequency data by

Foroni and Marcellino (2013) concludes that while the consensus is that ex-

ploiting data at different frequencies improves estimation fit, the superiority

of one method over others is unclear. In the mixed-frequency MIDAS re-

gressions used here, the low-frequency biomass variables are explained by

high-frequency indicators using parsimonious distributed lags. The results

provide support for our comparative statics proposing a negative correlation
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between the growth in stocks and change in the price-cost variable. Our out-

of-sample forecasts from the MIDAS method presented in Figures 11a and

11b show that our best fit models have produced a fairly accurate forecast

for period one (2016), but a much higher forecast for period two (2017).

VEC

The VEC approach, which uses only annual data, requires the existence of

at least one cointegrating vector. The unit root result in Table 2 does not

confirm that all series are integrated of the same order, but when there are

more than two variables in the model, cointegration of all individual series

involved is not required. The VEC model is applicable as long as at least two

series, or their linear combination with the third, are cointegrated (Engle

& Granger, 1987). An I(0) series, however, cannot enter the cointegrating

equation. Prior to the application of the VEC model, the Johansen coin-

tegrating test is used to analyze stationarity of the variables further and

ensure that there is at least one cointegrating equation in each model.

We focus on the system that is both consistent with the microeconomic

model and offers the best fit estimate under MIDAS regressions. Table 5 lists

the eigenvalues from the largest (most stationary) to the smallest (closest

to unit root), as well as the likelihood ratios and their critical values for

both Bio-0 and Bio-3. The number of non-zero eigenvalues determines the

number of cointegrating vectors and, based on the likelihood ratio test, both

models exhibit the existence of at least one cointegrating vector at the 5%

level. Clearly, cointegration does not prove causality. However, as Friedman

and Kuttner (1992) argue, cointegration establishes co-movements between
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Table 5: Johansen Cointegration Test

Variables Eigenvalue Trace Statis-
tic

5% Critical
Value

Probability Hypothesized
No. of CE(s)

B0 0.8860 106.02 47.86 0.00 None
LA 0.8060 60.40 29.80 0.00 At most 1
PC 0.4935 25.97 15.50 0.00 At most 2
CI 0.4267 11.68 3.84 0.00 At most 3

Trace test indicates 4 cointegrating eq. at the 0.05 level

B3 0.9453 119.76 47.86 0.00 None
LA 0.8314 58.73 29.80 0.00 At most 1
PC 0.5302 21.34 15.50 0.01 At most 2
CI 0.2297 5.48 3.84 0.02 At most 3

Trace test indicates 4 cointegrating eq. at the 0.05 level

variables.

We apply the VEC model using the Maximum Likelihood method in-

cluding biomass, landings, the price-cost variable, the input price index,

and the ITQ dummy variable. The normalized cointegrating equation es-

timates with respect to stock biomass are reported in Table 6. Although

all coefficients are reported, the coefficients for the PC variable are the pri-

mary concern. The results are consistent with the MIDAS regression models

where the rising PC variable signals falling stock biomass. In terms of the

control variables, the input price index in the Bio-0 estimate of the VEC

model has an unexpected negative sign, while it is statistically insignificant

in the estimate of the Bio-3 function. The coefficient for landings is positive

and statistically significant in both variations of the biomass estimates in

Table 6, reflecting the fact that during most of the study period stocks have

been recovering allowing landing per trip to rise.

Model estimates from Table 6 are used for in-sample forecasts of (growth

of) Bio-0 and Bio-3 and are shown in Figures 12a and 12b., respectively.
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Similar to the MIDAS in-sample forecasts, the forecasts closely trace the
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Figure 12: In-sample forecasts of Bio-0 growth (a, left) and Bio-3 growth
(b, right)

actual biomass changes. Out-of-sample forecasts for Bio-0 and Bio-3 are

presented in Figures 13a and 13b. Forecasts are also calculated with two-
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Figure 13: Out-of-sample forecasts of Bio-0 growth (a, left) and Bio-3 growth
(b, right)

standard-error confidence intervals. Therefore, with 95% confidence, the

forecast values for Bio-3 measure of stock biomass do not deviate from the

estimated (actual) values from SEDAR 52. However, the estimated (actual)

Bio-0 is outside of the 95% confidence interval. Furthermore, both estimates

would fail if the standard error were tightened to one.23

Comparing the in-sample and out-of-sample forecast accuracy measures

23To compare the performance of our estimates with a näıve model, we also produced
an out-of-sample forecast from a simple exponential trend model for the Bio-0 and Bio-3
measures of stocks. The forecast from the näıve models are less accurate and have wider
confidence internals than either the MIDAS or the VEC estimates.
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Table 6: Normalized Cointegrating Equation from VEC Models

Variables Model 1 (Bio-0) Model 2 (Bio3)

PC −0.3599a −0.4483a

(0.0633) (0.0580)
CI −0.8131a −0.2243

(0.1264) (0.1542)
LA 0.0726a 0.0384a

(0.0057) (0.0060)
Exogenous Variables:
ITQ Yes Yes
Log Likelihood −295.55 −295.55
AIC 32.72 32.72

In-Sample Forecast:
RMSE 2.5850 3.8525
MAE 2.0471 3.2539
Theil Inequality Coeff. 0.1436 0.2041

Out-of-Sample Forecast:
RMSE 5.7672 2.8464
MAE 4.2513 2.4912
Theil Inequality Coeff. 0.2645 0.1464

Note: a denotes statistical significance at the 1% level.
Standard errors are in parentheses.

from the VEC models in Table 6 suggests that the MIDAS estimations,

which combine the data frequencies, produced more accurate forecasts.

We next turn to the question of whether this empirical analysis can

be used to signal the need for an updated stock assessment. Unlike the

MIDAS estimates, the forecasts from the VEC models generate standard

errors, which can be used to compare the SEDAR 52 stock assessment es-

timates with the estimates in this study, which focuses on market signals.

The out-of-sample forecasts for Bio-0 and Bio-3 in the first period, shown

in Figure 13, are fairly accurate and fall within the 95% confidence inter-

vals. In other words, there is only a 5% chance for a deviation from the

actual stock assessment estimates in SEDAR 52: the market signals used in

this study confirm that the stock assessment is consistent with the economic
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performance in the fishery. However, the out-of-sample forecast in the sec-

ond period for BIO-0 falls outside of the 95% confidence level, which is not

surprising.

5.3 Summary

In our time-series analysis, we considered four variations of VAR analysis

and a VEC estimation. The standard VAR, B-VAR, and MF-BVAR models

produced poor fits. In the latter case, the poor fit was likely due to the

combination of over-parameterization inherent in the method and the small

sample size in this study. We therefore focused on the estimates from the

MIDAS approach, which is essentially a PDL regression and does not suffer

from the over-parametrization in the MF-BVAR approach, and those from

the VEC approach, which is a restricted variation of the VAR model with

fewer parameters to estimate. Controlling for changes in input prices, land-

ings, the price of grouper, and a dummy for the introduction of the ITQ

program, the results from our best-fit model estimate (Model 4) PDL co-

efficients suggest that the immediate effect of an increase in biomass (both

Bio-0 and Bio-3) is a drop in the PC variable, while a modest increase oc-

curs in the subsequent period. The long-term (cumulative) effect, which is

captured by the sum of the two PDL coefficients, supports the presence of

an inverse relation between PC and stock size.

The results from the VEC model, too, indicate that increases in the PC

variable are negatively correlated with a falling stock size. While the MI-

DAS forecasts are more accurate, the VEC procedure has the advantage of

producing confidence intervals around the forecasts, allowing us to conclude
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that the VEC forecasts give no reason to question current stock assessments.

6 Conclusion

To ensure the sustainability of renewable resources, governments need reli-

able measures of stock. Studies of non-renewable resources have provided

evidence that market indicators like prices can signal changes in resource

stocks (Slade, 1980; Moazzami and Anderson, 1994). Establishing a link

between market indicators and common-good renewable resources such as

fish is a more complex endeavor because the stock size is itself dependent

on the rate of utilization dictated by policy.

We use a simple microeconomic model to capture the economic and eco-

logical linkages in fisheries under various management systems and identify

the relevant variables that influence a commercial fisher’s decision to fish.

These variables include the size of the catch, the ex-vessel price for red

snapper, the cost of obtaining the right to fish under an ITQ management

system, and an input price index. The implied biomass calculations, that

is, stock sizes that are consistent with both profit-maximizing behavior and

the data, suggest that, contrary to SEDAR assessments, the population of

red snapper has been decreasing since 2012. While market indicators such

as prices and harvesting costs are no substitutes for biometric assessments,

they may at least serve as relatively affordable early warning systems to

trigger more careful stock assessments. The findings in the first part of this

paper are to be interpreted in that vein.

The empirical analysis of time-series data in the second part of the paper
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establishes a relation between the assessed biological stocks and the relevant

market variables identified in the theoretical model. In line with studies of

nonrenewable resources, we find a negative correlation between changes in

ex-vessel prices and two measures of abundance estimates, both with the

(mostly) monthly data used in the MIDAS approach and with the aggre-

gated annual data used in the VEC approach. In-sample and out-of-sample

forecasts from the successful models indicate that estimated Bio-0 and Bio-3

stock assessment measures from SEDAR 52 are within the 95% confidence

intervals of the estimated biomass from our models for the first period, while

we do not have the same level of confidence for a longer horizon. Overall,

the time-series analysis in the second part of the paper does not raise the

same red flags as our initial results.

We faced the challenge of a mismatch in data frequency, which is not

uncommon in time-series analysis, although it exacerbated the issue of a

relatively short time series. In contrast to studies on the long-term prices

of largely unregulated nonrenewable resources, which had access to a cen-

tury of data (e.g., Slade 1980), our observations only stretch over 25 years

with two distinct regulatory periods.24 We met the challenge and obtained

statistically reliable results by using parsimonious models and econometric

techniques such as MIDAS and VEC that estimate fewer parameters.

We thus demonstrate that both single-frequency and mixed-frequency

data can be used in forecasting biological stock, as long as the period for

the time-series data is sufficiently long. However, our approach cannot be

24Data collection efforts only began years after the marine fishery conservation and
management legislation known as the Magnuson-Stevens Act of 1976 and its subsequent
reauthorizations.
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replicated for other fisheries or regions, unless the model specifications are

adapted to the specific environmental conditions and resource management

regimes.

Our study shows that it is possible to infer unobserved stock changes

from observed price changes, which is in the spirit of a minimum information

management system as proposed by Arnason (1990). Price information can

serve as a signal mechanism to alert for changes in stocks and thus the

need for assessment and could potentially also be used for species that are

neither managed nor assessed, in particular to the extent that the stock-price

relationship may be less complex for unmanaged species.
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A Appendix

A.1 Race to Fish under CFQ

Because the fisheries council had to impose seasonal closures, the annual

quota restrictions must have been binding. Assuming that individual firms

were unable to cooperatively agree to limit their annual harvests to their

fair share of the quota, the modeling of profit-maximizing behavior should

explicitly take into account competition for access (race to fish), in which a

vessel i’s share σi of the TAC is determined by relative racing effort Ei, e.g.,

σi =
Ei∑N
j=1Ej

. (21)

Letting ȳ stand for the trip limit and Q for a year’s TAC, a fisher’s annual

catch will be T ȳ = σiQ. Therefore the fisher’s optimization problem becomes

max
Ei

Πi =
Ei∑
j Ej

Q

ȳ
πt − Ei (22)

and at the symmetric Nash equilibrium Ei = E, a firm’s racing effort will

be

E =
N − 1

N2

Q

ȳ
πt. (23)
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Since T = Q
Nȳ , the expression for profit is

Π =
Q

Nȳ
πt −

N − 1

N2

Q

ȳ
πt

=
Q

N2ȳ

(
(1 − `)(pt − kt)

Q

NT
− wt

(
Q

NTqB

)1/α
)
, (24)

which implicitly defines biomass. Unfortunately, without reliable data on

annual profits and, in particular, the hidden costs of derby fishing, these

results do not allow for biomass inference.

A.2 Tables
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Table A1: Standard VAR - Annual Data

Total Biomass
Annual Monthly

Model 1 Model 2 Model 3 Model 4

Full-Sample VAR:
PC (L1) −0.0031 0.0125 −0.0133 0.0119

(0.0864) (0.0741) (0.0940) (0.0908)
PC (L2) −0.0267 −0.0042 −0.0328 −0.0355

(0.0733) (0.0985) (0.0695) (0.0804)
Adj. R2 0.69 0.62 0.77 0.79
F-Stat. 12.59 5.36 8.08 7.66
Log Likelihood −55.38 −54.48 −47.18 −43.93
AIC 5.49 −5.77 5.29 5.18
System Variables B3, PC + LA, CI + ITQ + PG

In-Sample Forecast:
RMSE 3.1534 4.9840 3.4585 3.0258
MAE 2.7313 4.0913 2.8972 2.6713
Theil Inequality Coeff. 0.6356 0.5589 0.3272 0.2786

Out-of-Sample Forecast:
RMSE 2.6144 7.9591 6.0694 4.7810
MAE 2.2343 6.0863 5.036 4.7537
Theil Inequality Coeff. 0.6051 0.8787 0.9359 0.8948

3-Plus Biomass

Full-Sample VAR:
PC (L1) −0.0654 −0.0759 −0.0837 −0.0739

(0.0689) (0.0653) (0.0525) (0.0557)
PC (L2) 0.0367 0.0790 0.0388 0.0271

(0.0706) (0.0720) (0.0562) (0.0630)
Adj. R2 0.76 0.79 0.88 0.87
F-Stat 17.76 11.11 16.70 12.92
Log Likelihood −54.76 50.20 42.23 40.92
AIC 5.43 5.38 4.84 4.90
System Variables B3, PC + LA, CI + ITQ + PG

In-Sample Forecast:
RMSE 10.5337 4.5585 3.9253 3.4624
MAE 8.5489 3.8455 3.3529 3.0011
Theil Inequality Coeff. 0.6936 0.4789 0.3852 0.3276

Out-of-Sample Forecast:
RMSE 11.7413 8.5035 8.6442 5.6901
MAE 11.4044 7.0780 7.1965 4.1894
Theil Inequality Coeff. 0.9669 0.8541 0.8572 0.8505

Note: Automatic lag selection, max lags = 12. a, b, and c denote statistical
significance at the 1%, 5%, and 10% levels, respectively. Standard errors are
in parentheses.
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Table A2: B-VAR with Normal-Wishart Prior

Total Biomass
Annual Monthly

Model 1 Model 2 Model 3 Model 4

Full-Sample B-VAR:
PC (L1) −0.0031 0.0125 −0.0170 0.0112

(0.0712) (0.0741) (0.0654) (0.0582)
PC (L2) −0.0267 −0.0042 −0.0305 −0.0373

(0.0733) (0.0985) (0.0504) (0.0530)
Adj. R2 0.69 0.62 0.77 0.79
F-Stat. 12.59 5.36 8.05 7.62
Marg. Log Likelihd −212.33 −616.50 −623.78 −763.15
System Variables B3, PC + LA, CI + ITQ + PG

In-Sample Forecast:
RMSE 2.8786 2.7500 1.9768 1.7149
MAE 2.2421 2.1254 1.5490 1.2588
Theil Inequality Coeff. 0.1731 0.1646 0.1170 0.1011

Out-of-Sample Forecast:
RMSE 0.9815 0.9966 4.8504 3.3883
MAE 0.9311 0.9249 3.8089 3.3797
Theil Inequality Coeff. 0.0537 0.0546 0.1821 0.1635

3-Plus Biomass

Full-Sample B-VAR:
PC (L1) −0.0654 −0.0759 −0.0856b −0.0786

(0.0580) (0.0491) (0.0389) (0.0373)
PC (L2) 0.0367 0.0790 0.0421 0.0232

(0.0595) (0.0541) (0.0419) (0.0426)
Adj. R2 0.76 0.79 0.88 0.87
F-Stat 17.76 11.11 16.43 12.54
Marg. Log Likelihd −213.18 −616.28 −632.28 −781.50
System Variables B3, PC + LA, CI + ITQ + PG

In-Sample Forecast:
RMSE 1.7861 2.2613 1.5858 1.5174
MAE 1.5048 1.6718 1.2567 1.2266
Theil Inequality Coeff. 0.0916 0.1086 0.0758 0.0724

Out-of-Sample Forecast:
RMSE 2.7943 2.6248 3.4538 4.4673
MAE 2.3005 2.3977 3.4589 4.3787
Theil Inequality Coeff. 0.1350 0.1673 0.1669 0.1999

Note: Number of draws = 2000; overall tightness (lambda) = 5. a, b, and
c denote statistical significance at the 1%, 5%, and 10% levels, respectively.
Standard errors are in parentheses.
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Table A3: MF-VAR

Total Biomass
Annual Monthly

Model 1 Model 2 Model 3 Model 4

Full-Sample MF-VAR:
Adj. R2 0.79 0.85 −0.126 −0.24
F-Stat. 6.02 3.63 −0.0536 971.20
SSE 2.70 116.09 882.24 −0.08
System Variables B3, PC + LA, CI + ITQ + PG
Nbr. Freq. Conversions 12 12 6 6

In-Sample Forecast:
RMSE 2.6708 1.1059 11.5340 4.9962
MAE 2.1385 0.6435 8.4077 3.1403
Theil Inequality Coeff. 1.1620 0.0643 0.5093 0.2731

Out-of-Sample Forecast:
RMSE 3.8295 11.7436 11.7913 26.2926
MAE 3.7954 8.8306 422.4173 23.5273
Theil Inequality Coeff. 0.2829 0.6984 0.9990 0.8017

3-Plus Biomass

Full-Sample MF-VAR:
Adj. R2 0.88 0.70 0.48 0.25
F-Stat 11.56 1.41 522.01 757.82
SSE 125.18 299.48 0.41 0.1079
System Variables B3, PC + LA, CI + ITQ + PG
Nbr. Freq. Conversions 12 12 6 6

In-Sample Forecast:
RMSE 2.2809 1.4235 2.998 5.1306
MAE 1.7418 1.0494 1.9455 3.4499
Theil Inequality Coeff. 0.1098 0.0673 0.1395 0.2354

Out-of-Sample Forecast:
RMSE 3.4305 82.8299 10.5257 57.6549
MAE 3.2585 78.9378 8.2836 57.5024
Theil Inequality Coeff. 0.1621 0.9307 0.6165 0.8422

Note: Number of draws = 2000; overall tightness (lambda) = 5. While the
initial estimates of the model are Bayesian, the forecast uses the classical point
method because the Bayesian forecast could not be made. a, b, and c denote
statistical significance at the 1%, 5%, and 10% levels, respectively. Standard
errors are in parentheses.
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